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Abstract
We present a new dataset and models for com-
prehending paragraphs about processes (e.g.,
photosynthesis), an important genre of text de-
scribing a dynamic world. The new dataset,
ProPara, is the first to contain natural (rather
than machine-generated) text about a chang-
ing world along with a full annotation of
entity states (location and existence) during
those changes (81k datapoints). The end-task,
tracking the location and existence of entities
through the text, is challenging because the
causal effects of actions are often implicit and
need to be inferred. We find that previous
models that have worked well on synthetic
data achieve only mediocre performance on
ProPara, and introduce two new neural models
that exploit alternative mechanisms for state
prediction, in particular using LSTM input en-
coding and span prediction. The new models
improve accuracy by up to 19%. The dataset
and models are available to the community at
http://data.allenai.org/propara.

1 Introduction

Building a reading comprehension (RC) system
that is able to read a text document and to answer
questions accordingly has been a long-standing
goal in NLP and AI research. Impressive progress
has been made in factoid-style reading compre-
hension, e.g., (Seo et al., 2017a; Clark and Gard-
ner, 2017), enabled by well-designed datasets and
modern neural network models. However, these
models still struggle with questions that require
inference (Jia and Liang, 2017).

Consider the paragraph in Figure 1 about pho-
tosynthesis. While top systems on SQuAD (Ra-
jpurkar et al., 2016) can reliably answer lookup
questions such as:
Q1: What do the roots absorb? (A: water, minerals)
they struggle when answers are not explicit, e.g.,
Q2: Where is sugar produced? (A: in the leaf)1

∗*Bhavana Dalvi Mishra and Lifu Huang contributed
equally to this work.

1For example, the RC system BiDAF (Seo et al., 2017a)
answers “glucose” to this question.

Chloroplasts in the leaf of the plant trap light
from the sun. The roots absorb water and min-
erals from the soil. This combination of water
and minerals flows from the stem into the leaf.
Carbon dioxide enters the leaf. Light, water
and minerals, and the carbon dioxide all com-
bine into a mixture. This mixture forms sugar
(glucose) which is what the plant eats.

Q: Where is sugar produced?
A: in the leaf

Figure 1: A paragraph from ProPara about photosyn-
thesis (bold added, to highlight question and answer el-
ements). Processes are challenging because questions
(e.g., the one shown here) often require inference about
the process states.

To answer Q2, it appears that a system needs knowl-
edge of the world and the ability to reason with
state transitions in multiple sentences: If carbon
dioxide enters the leaf (stated), then it will be at
the leaf (unstated), and as it is then used to produce
sugar, the sugar production will be at the leaf too.

This challenge of modeling and reasoning with
a changing world is particularly pertinent in text
about processes, demonstrated by the paragraph in
Figure 1. Understanding what is happening in such
texts is important for many tasks, e.g., procedure
execution and validation, effect prediction. How-
ever, it is also difficult because the world state is
changing, and the causal effects of actions on that
state are often implicit.

To address this challenging style of reading com-
prehension problem, researchers have created sev-
eral datasets. The bAbI dataset (Weston et al.,
2015) includes questions about objects moved
throughout a paragraph, using machine-generated
language over a deterministic domain with a small
lexicon. The SCoNE dataset (Long et al., 2016)
contains paragraphs describing a changing world
state in three synthetic, deterministic domains, and
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Figure 2: A (simplified) annotated paragraph from
ProPara. Each filled row shows the existence and lo-
cation of participants between each step (“?” denotes
“unknown”, “-” denotes “does not exist”). For example
in state0, water is located at the soil.

assumes that a complete and correct model of the
initial state is given for each task. However, ap-
proaches developed using synthetic data often fail
to handle the inherent complexity in language when
applied to organic, real-world data (Hermann et al.,
2015; Winograd, 1972).

In this work, we create a new dataset, ProPara
(Process Paragraphs), containing 488 human-
authored paragraphs of procedural text, along with
81k annotations about the changing states (exis-
tence and location) of entities in those paragraphs,
with an end-task of predicting location and exis-
tence changes that occur. This is the first dataset
containing annotated, natural text for real-world
processes, along with a simple representation of
entity states during those processes. A simplified
example is shown in Figure 2.

When applying existing state-of-the-art systems,
such as Recurrent Entity Networks (Henaff et al.,
2016) and Query-reduction Networks (Seo et al.,
2017b), we find that they do not perform well on
ProPara and the results are only slightly better than
the majority baselines. As a step forward, we pro-
pose two new neural models that use alternative
mechanisms for state prediction and propagation,
in particular using LSTM input encoding and span
prediction. The new models improve accuracy by
up to 19%.

Our contributions in this work are twofold: (1)
we create ProPara, a new dataset for process para-
graph comprehension, containing annotated, natu-
ral language paragraphs about real-world processes,
and (2) we propose two new models that learn to
infer and propagate entity states in novel ways, and
outperform existing methods on this dataset.

2 Related Work

Datasets: Large-scale reading comprehension
datasets, e.g., SQuAD (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), have successfully
driven progress in question answering, but largely
targeting explicitly stated facts. Often, the result-
ing systems can be fooled (Jia and Liang, 2017),
prompting efforts to create harder datasets where
a deeper understanding of the text appears neces-
sary (Welbl et al., 2017; Araki et al., 2016).

Procedural text is a genre that is particularly
challenging, because the worlds they describe are
largely implicit and changing. While there are
few large datasets in this genre, two exceptions are
bAbI (Weston et al., 2015) and SCoNE (Long et al.,
2016), described earlier2. bAbI has helped advance
methods for reasoning over text, such as memory
network architectures (Weston et al., 2014), but has
also been criticized for using machine-generated
text over a simulated domain. SCoNE is closer to
our goal, but has a different task (given a perfect
world model of the initial state, predict the end
state) and different motivation (handling ellipsis
and coreference in context). It also used a deter-
ministic, simulated world to generate data.
Models: For answering questions about procedural
text, early systems attempted to extract a process
structure (events, arguments, relations) from the
paragraph, e.g., ProRead (Berant et al., 2014) and
for newswire (Caselli et al., 2017). This allowed
questions about event ordering to be answered, but
not about state changes, unmodelled by these ap-
proaches.

More recently, several neural systems have been
developed to answer questions about the world state
after a process, inspired in part by the bAbI dataset.
Building on the general Memory Network archi-
tecture (Weston et al., 2014) and gated recurrent
models such as GRU (Cho et al., 2014), Recurrent
Entity Networks (EntNet) (Henaff et al., 2016) is a
state-of-the-art method for bAbI. EntNet uses a dy-
namic memory of hidden states (memory blocks) to
maintain a representation of the world state, with
a gated update at each step. Memory keys can
be preset ("tied") to particular entities in the text,
to encourage the memories to record information
about those entities. Similarly, Query Reduction
Networks (QRN) (Seo et al., 2017b) tracks state in

2The ProcessBank (Berant et al., 2014) dataset is smaller
and does not address state change, instead containing 585
questions about event ordering and event arguments.
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a paragraph, represented as a hidden vector h. QRN
performs gated propagation of h across each time-
step (corresponding to a state update), and uses h
to modify (“reduce”) the query to keep pointing to
the answer at each step (e.g., “Where is the apple?”
at step1 might be modified to “Where is Joe?” at
step2 if Joe picks up the apple). A recent proposal,
Neural Process Networks (NPN) (Bosselut et al.,
2018), also models each entity’s state as a vec-
tor (analogous to EntNet’s tied memories). NPN
computes the state change at each step from the
step’s predicted action and affected entity(s), then
updates the entity(s) vectors accordingly, but does
not model different effects on different entities by
the same action.

Both EntNet and QRN find a final answer by
decoding the final vector(s) into a vocabulary en-
try via softmax classification. In contrast, many
of the best performing factoid QA systems, e.g.,
(Seo et al., 2017a; Clark and Gardner, 2017), re-
turn an answer by finding a span of the original
paragraph using attention-based span prediction, a
method suitable when there is a large vocabulary.
We combine this span prediction approach with
state propagation in our new models.

3 The ProPara Dataset

Task: Our dataset, ProPara, focuses on a partic-
ular genre of procedural text, namely simple sci-
entific processes (e.g., photosynthesis, erosion). A
system that understands a process paragraph should
be able to answer questions such as: “What are
the inputs to the process?”, “What is converted
into what?”, and “Where does the conversion take
place?”3 Many of these questions reduce to under-
standing the basic dynamics of entities in the pro-
cess, and we use this as our task: Given a process
paragraph and an entity e mentioned in it, identify:
(1) Is e created (destroyed, moved) in the process?
(2) When (step #) is e created (destroyed, moved)?
(3) Where is e created (destroyed, moved from/to)?
If we can track the entities’ states through the pro-
cess and answer such questions, many of the higher-
level questions can be answered too. To do this, we
now describe how these states are representated in
ProPara, and how the dataset was built.
Process State Representation: The states of the
world throughout the whole process are represented
as a grid. Each column denotes a participant entity

3For example, science exams pose such questions to test
student’s understanding of the text in various ways.

(a span in the paragraph, typically a noun phrase)
that undergoes some creation, destruction, or move-
ment in the process. Each row denotes the states
of all the participants after a step. Each sentence
is a step that may change the state of one or more
participants. Therefore, a process paragraph with
m sentences and n participants will result in an
(m + 1) × n grid representation. Each cell li j in
this grid records the location of the j-th participant
after the i-th step, and l0 j stores the location of j-th
participant before the process.4 Figure 2 shows one
example of this representation.

Paragraph Authoring: To collect paragraphs,
we first generated a list of 200 process-evoking
prompts, such as “What happens during photosyn-
thesis?”, by instantiating five patterns5, with nouns
of the corresponding type from a science vocabu-
lary, followed by manual rewording. Then, crowd-
sourcing (MTurk) workers were shown one of the
prompts and asked to write a sequence of event
sentences describing the process. Each prompt was
given to five annotators to produce five (indepen-
dent) paragraphs. Short paragraphs (4 or less sen-
tences) were then removed for a final total of 488
paragraphs describing 183 processes. An example
paragraph is the one shown earlier in Figure 1.

Grid and Existence: Once the process para-
graphs were authored, we asked expert annotators6

to create the initial grids. First, for each paragraph,
they listed the participant entities that underwent a
state change during the process, thus creating the
column headers. They then marked the steps where
a participant was created or destroyed. All state
cells before a Create or after a Destroy marker were
labeled as "not exists". Each initial grid annotation
was checked by a second expert annotator.

Locations: Finally, MTurk workers were asked
to fill in all the location cells. A location can be
“unknown" if it is not specified in the text, or a span
of the original paragraph. Five grids for the same
paragraph were completed by five different Turkers,
with average pairwise inter-annotator agreement of
0.67. The end result was 81,345 annotations over
488 paragraphs about 183 processes. The dataset

4We only trace locations in this work, but the represen-
tation can be easily extended to store other properties (e.g.,
temperature) of the participants.

5The five patterns are: How are structure formed? How
does system work? How does phenomenon occur? How do
you use device? What happens during process?

6Expert annotators were from our organization, with a
college or higher degree.
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Figure 3: (a) ProLocal uses bidirectional attention to make local predictions about state change type and location
(left), and then (b) propagates those changes globally using a persistence rule (right, shown for a single participant
(the Light), local predictions shown in blue, propagations via persistence in green).

bAbI SCoNE ProPara
Sentences Synthetic Natural Natural
Questions templated templated templated
# domains 20 3 183
Vocab #words 119 1314 2501
# sentences 131.1k 72.9k 3.3k
# unique sents 3.2k 37.4k 3.2k
Avg words/sent 6.5 10.2 9.0

Table 1: ProPara vs. other procedural datasets.

was then split 80/10/10 into train/dev/test by pro-
cess prompt, ensuring that the test paragraphs were
all about processes unseen in train and dev. Table 1
compares our dataset with bAbI and SCoNE.

4 Models

We present two new models for this task. The
first, ProLocal, makes local state predictions and
then algorithmically propagates them through the
process. The second, ProGlobal, is an end-to-end
neural model that makes all state predictions using
global information.

4.1 ProLocal: A Local Prediction Model

The design of ProLocal consists of two main com-
ponents: local prediction and commonsense per-
sistence. The former infers all direct effects of
individual sentences and the latter algorithmically
propagates known values forwards and backwards
to fill in any remaining unknown states.

4.1.1 Local Prediction

The intuition for local prediction is to treat it as a
surface-level QA task. BiLSTMs with span predic-
tion have been effective at answering surface-level
questions, e.g., Given “Roots absorb water.” and
“Where is the water?”, they can be reliably trained
to answer “Roots” (Seo et al., 2017a). We incorpo-
rate a similar mechanism here.

Given a sentence (step) and a participant e in it,
the local prediction model makes two types of pre-
dictions: the change type of e (one of: no change,
created, destroyed, moved) and the locations of e
before and after this step. The change type predic-
tion is a multi-class classification problem, while
the location prediction is viewed as a SQuAD-style
surface-level QA task with the goal to find a lo-
cation span in the input sentence. The design of
this model is depicted in Figure 3(a), which adapts
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) recurrent neural network architecture
(biLSTM) with attention for input encoding. The
prediction tasks are handled by two different output
layers. We give the detail of these layers below.

Input Encoding: Each word wi in the input sen-
tence is encoded with a vector xi = [vw : ve : vv],
the concatenation of a pre-trained GloVe (Penning-
ton et al., 2014) word embedding vw, indicator vari-
ables ve on whether wi is the specified participant
and vv on whether wi is a verb (via a POS tagger).
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Context Encoding: A biLSTM is used to con-
textualize the word representations in a given sen-
tence. hi denotes the concatenated output of the
bidirectional LSTM for the embedded word xi, and
encodes the word’s meaning in context.
Bilinear Attention: Given the participant and
verb, the role of this layer is to identify which con-
textual word embeddings to attend to for generat-
ing the output. We first create hev by concatenating
the contextual embedding of the participant and
verb.7 We then use a bilinear similarity function
sim(hi, hev) = (hT

i ∗ B ∗ hev) + b, similar to (Chen
et al., 2016), to compute attention weights Ai over
each word wi in the sentence.

For state change type prediction, the words be-
tween the verb and participant may be important,
while for the location tagging, contextual cues
such as “from” and “to” could be more predictive.
Hence, we train two sets of attention parameters
resulting in weights A1 and A2 which are combined
with the contextual vectors hi as described below
to produce hidden states o1 and o2 that are fed to
the output layers. Here, |step| refers to number of
words in the given step or sentence.

o1 =
∑

i

A1i ∗ hi

o2 = [(A21 ∗ h1) : (A22 ∗ h2) : . . . : (A2|step| ∗ h|step|)]
Output 1: State Change Type: We apply a

feed-forward network on hidden state o1 to derive
the probabilities of the four state change type cate-
gories: Create, Destroy, Move and None.
Output 2: Location Spans: The second output
is computed by predicting BIO tags (one of five
tags: B-Before-LOC, I-Before-LOC, B-After-LOC,
I-After-LOC, O) for each word in the sentence.
We apply a feed-forward network on hidden state
o2i for wordi to derive the probabilities of these
location tags. Notice that if the change type is
predicted as “Create" (or “Destroy”) then only the
“after" (or “before”) location prediction is used.
Training: We train the state change type pre-
diction and location tag prediction models jointly,
where the loss is the sum of their negative log like-
lihood losses. We use Adadelta (Zeiler, 2012) with
learning rate 0.2 to minimize the total loss.

4.1.2 Commonsense Persistence
The local prediction model will partially fill in the
state change grid, showing the direct locational

7Multi-word entities/verbs or multiple verbs are repre-
sented by the average word vectors.

effects of actions (including “not exists” and “un-
known location”). To complete the grid, we then al-
gorithmically apply a commonsense rule of persis-
tence that propagates locations forwards and back-
wards in time where locations are otherwise miss-
ing. Figure 3(b) shows an example when applying
this rule, where ‘?’ indicates “unknown location".
This corresponds to a rule of inertia: things are by
default unchanged unless told otherwise. If there is
a clash, then the location is predicted as unknown.

4.2 ProGlobal: A Global Prediction Model

Unlike ProLocal, the design principle behind
ProGlobal is to model the persistence of state infor-
mation within the neural model itself, rather than as
a post-processing step. ProGlobal infers the states
of all participants at each step, even if they are not
mentioned in the current sentence, using: (1) the
global context (i.e., previous sentences), and (2)
the participant’s state from the previous step.

Given a sentence (step) with its context (para-
graph) and a participant e, ProGlobal predicts the
existence and location of e after this step in two
stages. It first determines the state of e as one of the
classes (“not exist”, “unknown location”, “known
location”). A follow-up location span prediction is
made if the state is classified as “known location”.

Figure 4 shows ProGlobal’s neural architecture,
where the left side is the part for state prediction at
each step, and the right side depicts the propagation
of hidden states from one step to the next. We
discuss the detail of this model below.

Input Encoding: Given a participant e, for
each stepi, we take the entire paragraph as input.
Each word w in the paragraph is represented with
three types of embeddings: the general word em-
bedding vw, a position embedding vd which indi-
cates the relative distance to the participant in the
paragraph, and a sentence indicator embedding vs

which shows the relative position (previous, cur-
rent, following) of each sentence in terms of the
current step i. Both the position embedding and the
sentence indicator embedding are of size 50 and are
randomly initialized and automatically trained by
the model. We concatenate these three types of em-
beddings to represent each word x = [vw : vd : vs].

Context Encoding: Similar to ProLocal, we use
a biLSTM to encode the whole paragraph and use
h̃ to denote the biLSTM output for each word.

State Prediction: As discussed earlier, we first
predict the location state of a participant e. Let
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Figure 4: ProGlobal predicts a participant’s state (type and location) after a given step using bilinear attention
over the entire paragraph, combined with its predictions from the previous step.
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Figure 5: Details of the LSTM+Softmax unit, used for
predicting the start/end words of a location.

H̃P
i = [h̃1

i , h̃
2
i , ..., h̃

|P|
i ] denote the hidden vectors

(contextual embeddings) for words in stepi with
respect to participant e, where ht

i denotes the t-th
word representation output by the biLSTM layer
and P is the whole paragraph. We then apply max
pooling to derive a paragraph representation: µP

i =

max(H̃P
i ). To incorporate the category prediction

of the previous step, stepi−1, we concatenate its
probability vector cP

i−1 ∈ R3 with µP
i , and apply a

feed-forward network to derive the probabilities of
the three categories:

cP
i = softmax(Wc · [µP

i : cP
i−1] + bc)

Location Span Prediction: (Figure 5). To predict
the location span, we predict the start word of the
span (by generating a probability distribution over
words) and the end word. To predict the location
start, we take two types of information as input: the
start probability distribution sP

i−1 ∈ R|P| predicted
from stepi−1, and the contextual embeddings H̃P

i of

words in the current stepi:

H̃∗i =

|P|∑

t=1

st
i−1 · H̃t

i

ϕt
i = LSTM([H̃t

i : H̃∗i ])
where H̃∗i is a sum of word vectors in the paragraph,
weighted by the start probabilities from the previ-
ous step stepi−1. ϕt

i is the encoded vector represen-
tation for the t-th word in the paragraph. We then
concatenate H̃P

i and ϕP
i , and apply a feed-forward

network to obtain the start probability distribution
for stepi: sP

i = softmax(Ws · [H̃P
i : ϕP

i ] + bs). Simi-
larly, to predict the end word of the span, we use
the start probability distribution sP

i of stepi and
H̃P

i , and apply another LSTM and feed-forward
networks to obtain the probabilities. For state0 (the
initial location before any steps), we directly feed
the sequence of the vectors from the encoding layer
to a linear transformation to predict the location
start, and apply the same architecture to predict the
location end.
Training: For each participant e of paragraph P,
the objective is to optimize the sum of the nega-
tive log likelihood of the category classification
and location span prediction8. We use Adadelta to
optimize the models with learning rate 0.5.

5 Experiments and Analysis

5.1 Tasks & Evaluation Metrics
As described in Section 3, the quality of a model
is evaluated based on its ability to answer three
categories of questions, with respect to a given
participant e:

8We compute the loss for location span prediction only
when the category is annotated as “known location”.
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Sentence Encoding Intermediate State Representn. Propagation through time Answer Decoding
EntNet positional encoding Dynamic memory blocks Gated propagation Softmax classification
QRN positional encoding Single latent vector h Gated propagation of h Softmax classification

ProLocal LSTM Explicit symbolic Algorithmic Span prediction
ProGlobal LSTM Distribution over spans LSTM Span prediction

Table 2: Design decisions in the four neural models.

(Cat-1) Is e created (destroyed, moved) in the pro-
cess?
(Cat-2) When (step#) is e created (destroyed,
moved)?
(Cat-3) Where is e created (destroyed, moved
from/to)?
These questions are answered by simple scans over
the state predictions for the whole process. (Cat-1)
is asked over all participants, while (Cat-2) and
(Cat-3) are asked over just those participants that
were created (destroyed, moved). The accuracy of
the answers is used as the evaluation metric, except
for questions that may have multiple answers (e.g.,
“When is e moved?"). In this case, we compare the
predicted and gold answers and use the F1 score as
the “accuracy" of the answer set prediction.9

For questions in category (3), an answer is con-
sidered correct if the predicted location is iden-
tical to, or a sub-phrase of, the labeled location
(typically just one or two words), after stop-word
removal and lemmatizing.

5.2 Baseline Methods

We compare our models with two top methods in-
spired by the bAbI dataset, Recurrent Entity Net-
works (EntNet) and Query Reduction Networks
(QRN), described earlier in Section 2. Both models
make different use of gated hidden states to propa-
gate state information through time, and generate
answers using softmax. The detailed comparisons
in their design are shown in Table 2.

We use the released implementations10 (with de-
fault hyper-parameter values), and retrained them
on our dataset, adapted to the standard bAbI QA
format. Specifically, we create three separate varia-
tions of data by adding three bAbI-style questions
after each step in a paragraph, respectively:

Q1. “Does e exist?” (yes/no)
Q2. “Is the location of e known?” (yes/no)
Q3. “Where is e?” (span)

The template Q1 is applied to all participants. Q2

9This approach has been adopted previously for questions
with multiple answers (e.g., (Berant et al., 2013)). For ques-
tions with only one answer, F1 is equivalent to accuracy.

10https://github.com/siddk/entity-network and
https://github.com/uwnlp/qrn

will only be present in the training data if Q1 is
“yes”, and similarly Q3 is only present if Q2 is
“yes”. These three variations of data are used to
train three different models from the same method.

At test time, we cascade the questions (e.g., ask
Q2 only if the answer to the Q1 model is “yes”),
and combine the model outputs accordingly to an-
swer the questions in our target tasks (Section 5.1).

We also compare against a rule-based base-
line and a feature-based baseline. The rule-based
method, called ProComp, uses a set of rules that
map (a SRL analysis of) each sentence to its effects
on the world state, e.g., IF X moves to Y THEN
after: at(X,Y). The rules were extracted from Verb-
Net (Schuler, 2005) and expanded. A full descrip-
tion of ProComp is available at (Clark et al., 2018).
The feature-based method uses a Logistic Regres-
sion (LR) classifier to predict the state change type
(Move, Create, etc.) for each participant + sentence
pair, then a NER-style CRF model to predict the
from/to locations as spans of the sentence. The LR
model uses bag-of-word features from the sentence,
along with a discrete feature indicating whether the
participant occurs before or after the verb in the
given sentence. The CRF model uses standard NER
features including capitalization, a verb indicator,
the previous 3 words, and the POS-tag of the cur-
rent and previous word. Similar to our ProLocal
model, we apply commonsense persistence rules
(Section 4.1.2) to complete the partial state-change
grids predicted by both these baselines.

5.3 Results

Parameter settings: Both our models use GloVe
embeddings of size 100 pretrained on Wikipedia
2014 and Gigaword 5 corpora11. The number
of hidden dimensions for the biLSTM are set to
50(ProLocal) and 100(ProGlobal). Dropout rates
(Srivastava et al., 2014) for the contextual encod-
ing layer are 0.3(ProLocal) and 0.2(ProGlobal).
ProGlobal uses word position and sentence indi-
cator embeddings each of size 50, and span pre-
diction LSTMs with a hidden dimension of 10.
The learning rates for Adadelta optimizer were

11https://nlp.stanford.edu/projects/glove
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Question type Baseline Models Our Models Human
(# questions) Majority QRN EntNet Rule-based Feature-based ProLocal ProGlobal Upper Bound
Cat-1 (750) 51.01 52.37 51.62 57.14 58.64 62.65 62.95 91.67
Cat-2 (601) - 15.51 18.83 20.33 20.82 30.50 36.39 87.66
Cat-3 (823) - 10.92 7.77 2.4 9.66 10.35 35.9 62.96
macro-avg - 26.26 26.07 26.62 29.7 34.50 45.08 80.76
micro-avg 26.49 25.96 26.24 29.64 33.96 45.37 79.69

Table 3: Model accuracy on the end task (test partition of ProPara). Questions are (Section 5.1): (Cat-1) Is ei
created (destroyed, moved)? (Cat-2) When is ei created (...)? (Cat-3) Where is ei created (...)?

0.2(ProLocal) and 0.5(ProGlobal). Our models
are trained on the train partition and the parameters
tuned on the dev partition.

Table 3 compares the performance of various
models on the ProPara test partition. For the first
category of questions, we also include a simple
majority baseline. We aggregate results over the
questions in each category, and report both macro
and micro averaged accuracy scores.

From Table 3, we can see that EntNet and QRN
perform comparably when applied to ProPara.
However, despite being the top-performing sys-
tems for the bAbI task, when predicting whether a
participant entity is created, destroyed or moved,
their predictions are only slightly better than the
majority baseline. Compared to our local model
ProLocal, EntNet and QRN are worse in predict-
ing the exact step where a participant is created,
destroyed or moved, but better in predicting the
location. The weak performance of EntNet and
QRN on ProPara is understandable: both systems
were designed with a different environment in mind,
namely a large number of examples from a few
conceptual domains (e.g., moving objects around
a house), covering a limited vocabulary. As a re-
sult, they might not scale well when applied to real
procedural text, which justifies the importance of
having a real challenge dataset like ProPara.

Although the rule-based baseline (Clark et al.,
2018) uses rules mapping SRL patterns to state
changes, its performance appears limited by the
incompleteness and approximations in the rulebase,
and by errors by the SRL parser. The feature-based
baseline performs slightly better, but its perfor-
mance is still poor compared to our neural models.
This suggests that it has not generalized as well to
unseen vocabulary (25% of the test vocabulary is
not present in the train/dev partitions of ProPara).

When comparing our two models, it is interest-
ing that ProGlobal performs substantially better
than ProLocal. One possible cause of this is cas-
cading errors in ProLocal: if a local state predic-

tion is wrong, it may still be propagated to later
time steps without any potential for correction, thus
amplifying the error. In contrast, ProGlobalmakes
a state decision for every participant entity at every
time-step, taking the global context into account,
and thus appears more robust to cascading errors.
Furthermore, ProGlobal’s gains are mainly in Cat-
2 and Cat-3 predictions, which rely more heavily
on out-of-sentence cues. For example, 30% of the
time the end-location is not explicitly stated in the
state-change sentence, meaning ProLocal cannot
predict the end-location in these cases (as no sen-
tence span contains the end location). ProGlobal,
however, uses the entire paragraph and may iden-
tify a likely end-location from earlier sentences.

Finally, we computed a human upper bound for
this task (last column of Table 3). During dataset
creation, each grid was fully annotated by 5 differ-
ent Turkers (Section 3). Here, for each grid, we
identify the Turker whose annotations result in the
best score for the end task with respect to the other
Turkers’ annotations. The observed upper bound
of ∼80% suggests that the task is both feasible and
well-defined, and that there is still substantial room
for creating better models.

5.4 Analysis

To further understand the strengths and weaknesses
of our systems, we ran the simplified paragraph in
Figure 2 verbatim through the models learned by
ProLocal and ProGlobal. The results are shown
in Figure 6, with errors highlighted in red.

ProLocal correctly interprets “Light from the
sun and CO2 enters the leaf.” to imply that the
light was at the sun before the event. In addition,
as there were no earlier mentions of light, it prop-
agates this location backwards in time, (correctly)
concluding the light was initially at the sun. How-
ever, it fails to predict that “combine” (after state 3)
destroys the inputs, resulting in continued predic-
tion of the existence and locations for those inputs.
One contributing factor is that ProLocal’s predic-
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Figure 6: ProLocal (top) and ProGlobal (bottom) pre-
dictions on a simple paragraph (errors in red).

tions ignore surrounding sentences (context), po-
tentially making it harder to distinguish destructive
vs. non-destructive uses of “combine”.

ProGlobal also makes some errors on this text,
most notably not realizing the light and CO2 exist
from the start (rather, they magically appear at the
leaf). Adding global consistency constraints may
help avoid such errors. It is able to predict the
sugar is formed at the leaf, illustating its ability
to persist and transfer location information from
earlier sentences to draw correct conclusions.

We additionally randomly selected 100 predic-
tion errors from the dev set for ProGlobal, and
identified four phenomena contributing to errors:

(1) Implicit Creation/Destruction: In 37% of
the errors, the information about the creation or
destruction of a participant is implicit or missing,
which resulted in existence classification errors.
For example, in the sentences “A fuel goes into
the generator. The generator converts mechanical
energy into electrical energy.”, “fuel” is implicitly
consumed as the generator converts mechanical
energy into electrical energy.

(2) Location Errors: In 27% of the examples,
the location spans were not perfectly identified as
follows: absolute wrong location span prediction
(17%), longer span prediction (6%), and location
prediction from different granularity (4%).

(3) Complex Syntax: In 13% of the examples, a

moving participant and its target location are sepa-
rated with a wide context within a sentence, making
it harder for the model to locate the location span.

(4) Propagation: ProGlobal tends to propagate
the previous location state to next step, which may
override locally detected location changes or prop-
agate the error from previous step to next steps. 9%
of the errors are caused by poor propagation.

5.5 Future Directions

This analysis suggests several future directions:
Enforcing global consistency constraints: e.g.,
it does not make sense to create an already-existing
entity, or destroy a non-existent entity. Global con-
straints were found useful in the earlier ProRead
system (Berant et al., 2014).
Data augmentation through weak supervision:
additional training data can be generated by ap-
plying existing models of state change, e.g., from
VerbNet (Kipper et al., 2008), to new sentences to
create additional sentence+state pairs.
Propagating state information backwards in
time: if e j is at li j after stepi, it is likely to also
be there at stepi−1 given no information to the con-
trary. ProGlobal, EntNet, and QRNs are inherently
unable to learn such a bias, given their forward-
propagating architectures.

6 Conclusion

New datasets and models are required to take read-
ing comprehension to a deeper level of machine
understanding. As a step in this direction, we
have created the ProPara dataset, the first to con-
tain natural text about a changing world along
with an annotation of entity states during those
changes. We have also shown that this dataset
presents new challenges for previous models, and
presented new models that exploit ideas from
surface-level QA, in particular LSTM input encod-
ing and span prediction, producing performance
gains. The dataset and models are available at
http://data.allenai.org/propara.
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